Blogia
Ciencia y Tecnología desde Uruguay

Cáncer: Diagnóstico y Tratamiento

Nuevas perspectivas en tumores cancerosos

Nuevas perspectivas en tumores cancerosos

Por Gaby Vitovich

Para alguien con un tumor canceroso, la remoción quirúrgica del mismo puede traer un alivio inmediato, pero lo deja con un futuro incierto. Algunas veces resurgen células cancerosas, y no hay una manera cierta de saber cuando esto sucede.  Una nueva técnica podrá permitir monitorear la recurrencia del cáncer simplemente con un análisis de sangre.

Las células cancerosas generalmente tienen rearreglos cromosómicos a gran escala, que no ocurren en las células normales y que son fácilmente detectados con los métodos genéticos corrientes. Por ej, pacientes con Leucemia Mieloide Crónica (LMC), tienen partes de los cromosomas 9 y 22 en sus células cancerosas. Es posible por esto detectar en las células sanguíneas si el tratamiento es efectivo o no. Esto no sucede con los tumores  sólidos, porque los rearreglos de ADN no son tan comunes como para generar test para detectarlos tempranamente.

Usando técnicas de secuenciación de ADN, investigadores en la Universidad Johns  Hopkins en Baltimore, Maryland, encontraron una forma de usar estos rearreglos cromosómicos para detectar ADN en tumores sólidos.  Extrajeron biopsias de mamas o de tumores de colon en 6 pacientes con cáncer y secuenciaron el genoma completo en cada célula tumoral.  En cada caso se encontraron cambios cromosómicos que no se hallan en personas con ADN normal. Cada uno de los 6 tumores tenían al menos 4 rearreglos cromosómicos únicos ( Victor Velculescu, Science Translational Medicine, AAAs Science NOW, 24 febrero 2010).

Seguidamente, los investigadores mostraron que podían usar la técnica de amplificación de ADN, PCR, para detectar pequeños cambios en el ADN normal.  El testeo de personas con un tumor canceroso colorrectal aún sin remover, daba positivo para sus biomarcadores específicos, mientras que para personas sanas, daba negativo. Posteriormente, se usó la técnica para el seguimiento de pacientes con cáncer de colon en respuesta a varios tratamientos. El monto de ADN específico para este cáncer en análisis de sangre, mostró un descenso en las horas siguientes a la cirugía, aumentó luego en las próximas semanas y luego descendió nuevamente después de la quimioterapia y cirugía para un segundo tumor en el hígado (metástasis).  Los oncólogos podrían usar estos biomarcadores para encontrar si el tratamiento instaurado  funciona o para corroborar que la cirugía removió todas las células cancerosas.

 Muchos clínicos usan ya distintos tipos de análisis sanguíneos para monitorear la respuesta de sus pacientes al tratamiento, como por ejemplo, el conteo de células tumorales circulantes. Pero estas células difícilmente se encuentran e incluso en algunos pacientes no pueden ser detectadas en lo absoluto. Los biomarcadores moleculares y cromosómicos son mucho más sensibles y extraordinariamente específicos. La chance de tener un falso positivo es prácticamente cero.

Lamentablemente, aún no se usan en forma rutinaria debido a su elevado costo económico,  que es de unos 5000 dlólares por paciente.  También será necesario secuenciar muchos más tumores para asegurarse de que tienen secuencias específicas en sus rearreglos cromosómicos, y asegurarse de que éstas no desaparezcan a medida que el tumor muta.

 

 

¡ Las Ratas Topo nunca tienen cáncer !

¡ Las Ratas Topo nunca tienen cáncer !

Viven 30 años y nunca tienen cáncer ... algunos científicos creen saber porqué

La superficie de las células cancerosas es bien diferente de la superficie de las células normales

Scientists know that cancerous cells and normal cells have different physical features, but the details of these differences, and why they occur, are not well understood. In a recent edition of Nature Nanotechnology , researchers report measurements of certain physical differences between the surfaces of normal and cancerous cells, suggesting a new way to characterize cancer cells and a possible route for detection.

Scanning electron microscope images of a cancerous (left) and normal cell, showing the differences in cell

Scanning electron microscope images of a cancerous (left) and normal cell, showing
the differences in cell "brush." Image courtesy Igor Sokolov

The group, composed of researchers from the Nanoengineering and Biotechnology Laboratories Center at Clarkson University, was studying human cervical cells. Led by Igor Sokolov, they focused on the cells’ surface features, including microridges and hair-like microvilii, which, perhaps acting like sensors, are one key way that the cells interact with their environment. Together, these features form a cell’s "brush."

They found that normal cervical cells tend to have a brush layer consisting of a single average length - 2.4 micrometers (millionths of a meter) - while the cancerous cells have mostly two typical lengths - 2.6 and 0.45 micrometers. Additionally, their analysis showed that the long cancer-cell brush is about half as dense as that of the normal-cell brush while the short cancer-cell brush is more than twice as dense.

The group made these findings using an atomic force microscope (AFM), a high-resolution device that can resolve details down to a fraction of a nanometer. The AFM works by scanning a surface with a tiny cantilever, a beam supported on one end so that it can move up and down. In an AFM, the beam is tipped with a nanometer-scale curved needle often made of silicon or silicon nitride. When brought near a sample, forces between the needle tip and the surface cause the cantilever to deflect. When the entire surface is scanned, the result is a set of force data that represents a surface map of the sample. By analyzing the forces, researchers can recover the nature and type of surface interactions.

In previous studies, scientists treated the surface of a cell as flat. In their work, the Clarkson researchers used various supporting techniques, including electron microscopy and confocal scanning laser microscopy, to show that the cell surface is sufficiently "brushy" to be visible in the AFM data. The researchers processed the forces using a "brush on soft surface" model, the type of model used to study polymer brushes (polymer chains tethered to a surface). Prior to this work, scientists had not looked at cell brush in this way.

The AFM method has an edge over other microscopy techniques, such as electron microscopy, because it can work with viable cells, avoiding misrepresentations of the cell structure and saving time on sample preparation.

More information: Nature Nanotechnology advance online publication 12 April 2009, DOI:10.1038/nnano.2009.77

Source: www.physorg.com /...

Microscopía de fuerza atómica diferencia las células cancerosas de las normales

Microscopía de fuerza atómica diferencia las células cancerosas de las normales

Fuente:

Labmedica en español
Actualizado el 10 Jun 2009

Mediante el uso de un microscopio de fuerza atómica, los científicos descubrieron que las células cancerosas y normales tenían propiedades diferentes en la superficie. La diferencia en las capas de cepillo que cubren la superficie celular podría tener un significado biológico y podrían ser usadas para la detección del cáncer.

Los cepillos en la superficie de la célula, consistiendo principalmente de microcrestas y pelos pequeños, llamados microvellos, son importantes para interactuar con el ambiente externo. Los investigadores procesaron mediciones de fuerza--tomadas de la superficie celular, usando un microscopio de fuerza atómica--de acuerdo con un modelo que cuenta esos cepillos, para mostrar cuantitativamente que las células cancerosas son diferentes. Las células normales tienen cepillos de una sola longitud, mientras que las células cancerosas tienen principalmente dos longitudes de los cepillos de densidades significativamente diferentes.

El grupo científico fue liderado por Igor Sokolov, director del Centro de Laboratorios de Nanoingeniería y Biotecnología en la Universidad Clarkson (Potsdam, NY, EUA). Las células cancerosas se detectan tradicionalmente mediante medios bioquímicos”, dijo el Profesor Sokolov. “Sin embargo, a pesar de muchos años de éxitos, estos métodos no han podido derrotar al cáncer. Por lo tanto, es muy importante buscar una alternativa, formas no tradicionales de observar el cáncer. La investigación de las propiedades químicas de las superficies celulares podría ser una forma no tradicional”.

Los autores también demostraron que la diferencia que se encuentra en el “cepillo” de la superficie celular es prácticamente imposible de encontrar con otros métodos microscópicos.

El estudio se publicó en línea en la revista Nature Nanotechnology, el 13 de abril de 2009.

Nanotecnología y Medicina: Tratamiento del Cáncer

Fuente: Portalciencia

"El enfermo, el anciano y el herido sufren una desorganización de los átomos provocada por un virus, el paso del tiempo o un accidente de coche", escribía Eric Drexler en su obra Engines of Creation en 1986. "En el futuro habrá aparatos capaces de reorganizar los átomos y colocarlos en su lugar". Con estas palabras preconizaba la revolución que ha supuesto la aplicación de los conocimientos y las tecnologías del nanocosmos a la medicina. Hoy por hoy, la nanomedicina es ya una realidad que está produciendo avances en el diagnóstico, la prevención y el tratamiento de las enfermedades.

Cápsulas que navegan por la sangre

El matrimonio entre medicina y nanotecnología se está convirtiendo en una pesadilla para el cáncer. El combate de la enfermedad a escala molecular permite detectar precozmente la enfermedad, identificar y atacar de forma más específica a las células cancerígenas. Por eso, el Instituto Nacional del Cáncer de Estados Unidos (NCI) ha puesto en marcha la "Alianza para la nanotecnología en el cáncer", un plan que incluye el desarrollo y creación de instrumentos en miniatura para la detección precoz.

En la administración de medicamentos, las nuevas técnicas son ya un hecho. "Los nanosistemas de liberación de fármacos actúan como transportadores de fármacos a través del organismo, aportando a estos una mayor estabilidad frente a la degradación, y facilitando su difusión a través de las barreras biológicas y, por lo tanto el acceso a las células diana", explica María José Alonso, investigadora de la Universidad de Santiago de Compostela, que trabaja en esta línea desde 1987. En el tratamiento del cáncer, asegura, "estos nanosistemas facilitan el acceso a las células tumorales y reducen la acumulación del fármaco en las células sanas y, por tanto, reducen los efectos tóxicos de los antitumorales"
.

Desde Estados Unidos, el nanotecnológo James Baker ha desarrollado otra alternativa basada en unas moléculas artificiales conocidas como dendrímeros. Se trata de estructuras tridimensionales ramificadas que pueden diseñarse a escala nanométrica con extraordinaria precisión. Los dendrímeros cuentan con varios extremos libres, en los que se pueden acoplar y ser transportadas moléculas de distinta naturaleza, desde agentes terapéuticos hasta moléculas fluorescentes. En su estudio, Baker aplicó una poderosa medicina contra el cáncer, metotrexato, a algunas ramas del dendrímero. En otras, incorporó agentes fluorescentes, así como ácido fólico o folato, una vitamina necesaria para el funcionamiento celular. "Es como un caballo de Troya. Las moléculas del folato en la nanopartícula se aferran a los receptores de las membranas celulares y éstas piensan que están recibiendo la vitamina. Al permitir que el folato traspase la membrana, la célula también recibe el fármaco que la envenena", señaló el investigador.

Las enfermedades infecciosas son otro de los grandes objetivos de la medicina actual. Por eso, la profesora Alonso y su equipo han desarrollado también nanopartículas que permiten administrar, en forma de simples gotas nasales, algunas vacunas que hasta ahora debían inyectarse. Su eficacia ha sido demostrada, hasta el momento, para las vacunas anti-tetánica y anti-diftérica. "Recientemente, hemos propuesto estas tecnologías al concurso de ideas promovido por la Fundación Bill & Melinda Gates para resolver los grandes problemas de salud del tercer mundo", añade la investigadora. "Nuestra idea para administrar de esta forma la vacuna de la Hepatitis B fue una de las seleccionadas de un total de 1.500 presentadas".

No menos importante es la batalla que en estos momentos se libra en todo el mundo contra la diabetes, y en la que la nanotecnología tiene mucho que decir. Las nanopartículas desarrolladas por Alonso y su equipo están siendo utilizadas en experimentos en la clínica para estudiar su uso como vehículos para administrar insulina por vía oral, nasal o pulmonar. Por su parte, la doctora Tejal Desai, profesora de bioingeniería en Boston, ha creado un dispositivo que puede ser inyectado en el torrente sanguíneo y actuar como páncreas artificial, liberando insulina. La técnica desarrollada por esta investigadora consiste en encapsular células que producen la insulina en contenedores con paredes con nanoporos, que por su tamaño sólo pueden ser atravesados por moléculas como el oxígeno, la glucosa o la insulina. De esta forma, las paredes de la cápsula impiden que estas células productoras de insulina sean reconocidas como extrañas por los anticuerpos, mientras que los poros permiten la liberación de la insulina y la entrada de nutrientes, como azúcares y nutrientes. La innovadora técnica tiene potencial para la cura de otras enfermedades tales como la enfermedad de Parkinson, por medio de la liberación de dopamina en el cerebro, o el Alzheimer.

Afinar el diagnóstico

Si las terapias están experimentando cambios drásticos, el diagnóstico no se queda atrás. De la mano de la nanotecnología nos adentramos en la era del diagnóstico molecular, sofisticado y preciso, que hace posible identificar enfermedades genéticas, infecciosas o incluso pequeñas alteraciones de proteínas de forma precoz.

No en vano, esta disciplina ha contribuido a la creación de biochips, que permiten la obtención de grandes cantidades de información trabajando a una escala muy pequeña. Con los biochips a nanoescala es posible conseguir en poco tiempo abundante información genética -tanto del individuo como del agente patógeno-, que permitirá elaborar vacunas, medir las resistencias de las cepas de la tuberculosis a los antibióticos o identificar las mutaciones que experimentan algunos genes y que desempeñan un papel destacado en ciertas enfermedades tumorales, como el gen p53 en los cánceres de colon y de mama.

El desarrollo de sensores a escala molecular parece no tener límites. Hace poco, un equipo de científicos de la Universidad de Harvard descubría que se pueden utilizar hilos ultrafinos de silicio para detectar la presencia de virus individuales, en tiempo real y con una gran precisión. Charles M. Lieber, profesor de Química en Harvard y coautor del descubrimiento, asegura que las posibilidades de estos detectores, que pueden ser ordenados en matrices capaces de detectar literalmente miles de virus diferentes, "podrían introducirnos en una nueva era en materia de diagnósticos, seguridad biológica y respuestas a brotes víricos". En el ambiente clínico, la extremada sensibilidad de las matrices de nanohilos permitiría detectar infecciones virales en sus primeros estadios, cuando el sistema inmunológico aún es incapaz de actuar.

Nano-robots

Más lejos quedan, de momento, las máquinas moleculares de reparación que viajarán a través del torrente sanguíneo, con capacidad de actuar sobre el ADN (enfermedades genéticas), modificar proteínas o incluso destruir células completas, en el caso de tumores. Sin embargo, algunos expertos se han atrevido ya a adelantar cómo serán esos futuros nano-robots.

Es el caso de Robert Freitas, investigador del Instituto de Fabricación Molecular de California, que ha creado una especie de glóbulo rojo artificial bautizado como respirocito. Con una sola micra de diámetro, este robot esférico imita la acción de la hemoglobina natural que se encuentra en el interior de los hematíes, aunque con la capacidad de liberar hasta 236 veces más oxígeno por unidad de volumen que un glóbulo rojo natural. Los respirocitos incorporarán sensores químicos, así como sensores de presión. De esta forma estarán preparados para recibir señales acústicas del médico, que utilizará un aparato transmisor de ultrasonidos para darles órdenes con el fin de que modifiquen su comportamiento mientras están en el interior del cuerpo del paciente.



Freitas ha diseñado también los microbívoros, fagocitos mecánicos concebidos para destruir cualquier microbio de nuestro torrente sanguíneo. Utilizando un protocolo digestivo y de descargas actuarán, según estima su creador, hasta 1000 veces más rápido que las defensas naturales.